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Abstract 

 

 Forecasting demand for airlift of sustainment cargo is an important function for 

logistics planners.  For the civil reserve air fleet participants (CRAF), having a useful 

long-range forecast enables them to make business decisions to maximize profit and 

manage their fleets.  Because the DoD relies on CRAF for much of its steady-state and 

wartime surge requirements, it is important for these civilian enablers to stay financially 

healthy in what has become a difficult market.  In addition to the CRAF airlines, DoD 

schedulers benefit from somewhat shorter-term forecasts of demand, as accurate forecasts 

help them allocate aircraft type and determine route frequency for airlift of sustainment 

cargo. 

 Time series forecasting is a method applied in many circumstances, to include 

forecasting of aviation service demand.  It does not require the modeler to attribute 

causation, but rather uses historical data of a univariate series to predict future values.  

This paper applies a variety of time-series techniques to historical sustainment demand 

data from Iraq and Afghanistan AORs, ultimately choosing a single technique to develop 

into a prediction model for future demand in each AOR.  The resulting models show 

excellent goodness-of-fit values and are successfully validated against a reserved portion 

of data. 
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TIME SERIES FORECASTING OF AIRLIFT SUSTAINMENT CARGO 
DEMAND 

I.  Introduction 

 “As the global war on terror[ism] continues, our forces are in distant 
countries fighting organized terrorists who seek to destroy our nation and 
destabilize the world. Military operations in these austere places are 
challenged by the need to deploy and supply troops over great distances. 
Airlift is a precious lifeline that keeps them fed and equipped, brings the 
wounded home, and eventually, brings our forces home.” 

Congressman Jim Saxton, 4 April 2005 

General Issue and Problem Statement 

The United States was at war in Iraq from March, 2003 until December, 2011, 

and has been at war in Afghanistan since October, 2001.  These massive undertakings 

required the deployment and sustainment of tens of thousands of troops in two different 

areas of responsibility (AORs) and have highlighted the need for better tools to forecast 

sustainment demand.  Figure 1 illustrates troop levels over time for these two conflicts.  

As with any military endeavor, but especially regarding those taking place far from home 

basing, logistics has been crucial to enabling operations.  A great definition of military 

logistics crystallizes this role as follows:  

“logistics is the process of planning and executing the movement and sustainment 
of operating forces in the execution of military strategy and operations.  It is the 
foundation of combat power – the bridge that connects the nation’s industrial base 
to its operating forces”.   (Kress: 4)     

 A relatively large portion of the sustainment of troops in Southwest Asia is 

accomplished via air transportation, likely due to the remoteness of the region, 

particularly in the case of Afghanistan.  For example, United States Transportation 



 

2 

Command (USTRANSCOM) through its organic air component Air Mobility Command 

(AMC) and its partnership with commercial carriers moved an estimated  20% of 

sustainment cargo to the Afghanistan AOR in 2010 (TRANSCOM/J3 Ops Update).  

AMC’s wartime logistics mission is to bring supplies, material, and/or personnel to  

supply units already engaged in combat operations.  (JP 3-17: I-2).   

Unfortunately, forecasting levels of demand for airlift of sustainment cargo has 

been difficult.  As Figure 1 illustrates, troop levels are constantly changing.  When the 

boots-on-ground numbers change, sometimes rapidly as in the case of the Iraq and 

Afghanistan “surges”,  sustainment demand tends to change as well, although not always 

proportionately.   This presents a dual challenge.  First, DoD planners need to know the 

Figure 1: Boots on Ground 
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demand in order to optimize a mix of commercial and organic assets tailored to the 

demanded levels of cargo.  In general, planners assign the Civil Reserve Air Fleet 

(CRAF) to channel missions, which are more predictable and less dangerous than other 

mission types.  Consequently the CRAF “flies 72% of DOD channel cargo missions, 

freeing up the AMC organic fleet for deliveries to high threat areas” (Grismer: 7). The 

second challenge is to the CRAF participants, who need a long range outlook to optimize 

business decisions. 

A brief discussion of commercial partners is warranted here as context to the 

importance of demand forecasting.  The Civil Reserve Air Fleet was started just after 

World War II as an organized way to expand the nation’s capacity for airlift in times of 

emergency.  The DoD offers peacetime business to participating US-controlled airlines as 

an incentive for their commitment of no less than 30% of their qualifying passenger fleet 

and 15% of their qualifying cargo fleet (Graham: 29).  In return, CRAF participants 

dedicate their designated fleet to the DoD for use when activated by the TRANSCOM 

commander (with approval of the Secretary of Defense) to one of three stages: minor 

regional crises (Stage 1), major theater war (Stage 2), or times of national mobilization 

(Stage 3) (Graham: 3).  Unfortunately today’s difficult economic environment and 

globalized airline industry have pushed our airlines to the edge of unprofitability.  From 

2001 to 2004 the industry lost $32 billion (Morrison: 1), returning to losses again with the 

recession beginning in 2008 (Census Bureau).  For CRAF to continue to entice our 

commercial partners to provide valuable wartime service the program must be a 
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profitable and predictable endeavor; effective long range scheduling is key to efficient, 

sustained profitable operations.   

Research Objectives/Questions/Hypotheses 

 The primary research objective is to create a model useful in predicting 

sustainment cargo demand up to a year in advance to enable strategic planning for CRAF 

and organic assets.  This long range forecasting capability is particularly useful for the 

CRAF partners, who “are best able to employ resources to support their primary 

commercial obligations and steady state DoD business when they can see all 

requirements in advance” (Grismer: 5).  But it is also beneficial to the DoD which garners 

better participation from CRAF partners by forecasting the requirements (Grismer: 5).  

Referencing Figure 2, which is tailored to commercial passenger airlines but applicable 

nonetheless, the long-range forecast is an enabler for the CRAF in strategic planning, 

budgeting, and revenue management.  

Figure 2: Forecasting Applications and Time-Frames Relative to Flight Departure 

  Source: Wickham 



 

5 

A secondary objective is for this model to be applied to the short-range (up to 3 

month) scheduling of CRAF and organic assets.  This shorter range capability would be 

useful to DoD planners who schedule channel missions and assign aircraft types to these 

missions.  In Figure 2, these are the functions of aircraft assignment and cargo load 

planning. 

Methodology 

This research employs a time-series analysis of cargo data pulled from the Global 

Air Transportation Execution System (GATES) database.  The analyzed data represent 

sustainment cargo whose aerial port of debarkation (APOD) resides in either of the two 

AORs or select other US Central Command (USCENTCOM) airfields.  According to JP 

3-17, “the vast majority of airlift sustainment will move on channel missions” (JP 3-17: I-

6).  The two types of channel mission, both captured in the data, are termed 

“requirements” and “frequency”.  Wartime requirements channels fly on schedules 

determined by traffic demand with set time parameters (time definite deliveries, or TDD), 

sacrificing efficiency for effectiveness if required.  Frequency channels are more regular 

in order to give geographic combatant commanders a predictable way to move cargo and 

personnel.  (JP 3-17: I-6)  Therefore, to model sustainment cargo the researcher used only 

those data coded as “channel” missions from fiscal years 2005-2011.  After limiting the 

data in this way, the total gross weight for the subject cargo, measured in pounds 

throughout this paper, was grouped into regular time-periods (seven-day and monthly) as 

required for time-series analysis.  Gross weight was used because channel cargo 

scheduling and billing is generally done on a per-weight basis (JP 4-09: p. II-5).  After 
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applying and comparing a number of different time-series analysis techniques, the 

researcher used goodness-of-fit testing and validation techniques to form a model. 

Assumptions/Limitations 

The researcher assumes that any errors or omissions in the GATES data source 

are randomly distributed and minor in degree, meaning such errors would affect data 

throughout the time series in equally small ways.  This assumption allows the resultant 

model function to be presented as representative of the historical cargo weight values and 

valid in predicting future values. 

The researcher also assumes that approximations made in reducing the data 

source to pertinent entries do not significantly affect the efficacy of the model.  For 

example, as previously mentioned the researcher equated “channel” cargo with 

“sustainment” cargo, which is true the “vast majority” (but not all) of the time.  Appendix 

A, Table 1 lists the airfields whose cargo demand is represented in the model. 

While the researcher was not adversely limited by the quantity of available data, 

the nature of this data did shape the methodology.  The data contained useful information 

to track a pallet’s weight, volume, route and dates of travel, and type of aircraft used, but 

it lacked information on significant independent variables (such as unit type requesting 

cargo) that might allow for a meaningful regression analysis of demand.  Given the 

available data, time-series forecasting was the most appropriate tool.    
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II.  Literature Review 

Chapter Overview 

This research required a working knowledge of CRAF as a backdrop for the 

motivation behind long-range forecasting.  There is a vast amount written on many 

aspects of the CRAF program; this research reviewed articles which helped explain the 

need, from the commercial partners’ point of view, for a more reliable and longer-range 

forecast of DoD business.  The selected literature coupled a description of the airline 

industry business environment with a look at the risks to doing business with the DoD. 

The heart of the literature review focuses on demand forecasting.  There is much 

written about demand for things from widgets to electricity to airline passengers and 

cargo, covering both commercial and government concerns, and ranging from strategic 

(long-range, big picture) forecasts to tactical (short-range, detailed) forecasts.  The 

pertinent literature addresses analytical techniques used in forecasting demand. 

Finally, the researcher performed a search for literature on airlift sustainment 

cargo demand forecasting.  While much has been written on cargo demand forecasting in 

general, very little was discovered dealing specifically with the subject of this paper, 

forecasting demand for wartime airlift of sustainment cargo.  A brief review of existing 

literature is nevertheless presented. 

CRAF and the Airline Industry 

Since its inception CRAF has only been activated twice.  During Operation Desert 

Storm (ODS) long range cargo and passenger aircraft were activated to Stage I from Aug 

1990 to Jan 1991, then to Stage II in Feb 1991.  During Operation Iraqi Freedom (OIF) 
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the CRAF saw Stage I activation for passengers in Jun 2003 (Arthur: 3).  During 

activation CRAF assets fly missions in support of the DoD and are compensated at 

negotiated ton-mile and passenger-mile rates, but control of scheduling CRAF assets is 

given over to Air Mobility Command.  Support for the DoD comes at the expense of 

commercial revenues and can mean a loss of market share where competitors are not as 

heavily invested in CRAF.  As an example, the DoD did not meet CRAF program 

participation goals for the two years subsequent to Operation Desert Shield/Storm.  This 

was due to significant concerns by CRAF participant CEOs regarding long-term business 

loss to competitors while their aircraft were committed to military operations (Arthur: 3).   

As a result the DoD had to improve the incentives for CRAF participation, one of 

a few times such a move has been required.  Beginning in 1995, participating carriers 

could only gain access to “peacetime” government business by committing assets to the 

CRAF.  Table 1 illustrates overall industry contribution to the CRAF program, while 

Table 2 shows specific airline requirements to access government customers. 

Table 1: Industry Commitment to CRAF 

Source:  Congressional Budget Office “Issues Regarding the Current and Future Use of the Civil Reserve 
Air Fleet,” 2007. 
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Table 2: CRAF-Linked Government Business 

 
  Source:  Institute for Defense Analysis, “Sustaining the Civil Reserve Air Fleet (CRAF) Program,”: 30) 
 

Business Category Annual Business CRAF-Linkage Pro\isions Comment 
($ millions) 

Business that Requires a Minimum Fleet Commitment 

GSA City Pairs Program S 560 million Commitment: 30 %of TotaJ City Pairs eligible 
(Indh·idu3lly tida!red DoD. long-range fleet re\·enue is about $1 billion; 
olhes" govemJllent. 111\d Due to waivers and 
goo.-emnent COC'Itr:lCtM incomplete enforcement, personnel ) 

about 40% of eligible 
re\·enue goes to non-CRAF 
carriers 

Domestic Charter S 62 million Commitment: 30 % of 

{Full-planeload domestic long-range fleet 

passenger charters.) 

E.'C}lress Cargo - Domestic S 98 million Commitment: 25% of 
(Domestic. snoll parcel. office long-range fleet; 30% for 
to oftice shipment for DoD both domestic and 
olher governTI\eiU ogencies. international 
3nd oost -reinbut-..oble 
goo.-emnent contr:lcton) 

World-Wide Express S 35 million Commitment: 25% of 
Cargo long-range fleet; 30% for 
(Inl"l!matiorutl. snoll parcel, both domestic and 
o.ffu:e to office wpnumr for interna tiona! 
DoD other go .. 'e11Ul\eru 
agencies. 3nd cost-
rflrllb=bll' go\'l!rnTAent 
COI\IJ'QCt!r.) 

Business that is Allocated in Proportion to Commitments (Mobilization Value Points) 

Category A Cargo S 55 million Business allocated in 
(Palletiz.ed cugo. le» than full proportion to ~V points: 
planeload. pick up Ql\d drop ~inimum Commitment: 15 
off at l'lliliwy depot.) % of long-range fleet 

AMC Passenger Charter S 300 million Business allocated in ··f i.,.ed-buy·· charters are 

(In:l'mationol fu.U-:Ii.rcf'aft proportion to ~ points: specified for each contract 
passenger cltaners.) ~inimum Commitment: 30 

year: .. E:q>ansion buys'· 
meet shon-notice 

% of long-range fleet requirements . 

AMC Cargo Charte.r S 180 million Business allocated in .. Fi...,.ed-buy·' charters are 

(Iruematiorutl fu.U-:Ii.rcf'aft proportion to ~ points: specified for each contract 
CMgO charter'S.) ~inimum Commitment: 15 

year: .. Expansion buys'· 
meet shon-notice 

% of long-range fleet requirements. 

Cargo Charter Business 
will be displaced by 
organic C-17s 
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Access to roughly 60% of this business requires an airline to commit at least 30% 

of its long-haul capacity to CRAF.  Access to the remaining 40% of government business 

is achieved through the mobilization value (MV) point system, which allows teams of 

carriers to form and compete for government business.  MV points are earned according 

to the number and type of aircraft committed to CRAF, and government market share is 

earned in proportion to MV points (Graham: 29-30). 

The peacetime (non-activated) business is divided into “fixed buys” and 

“expansion buys”.  Fixed buys are purchased at the outset of a fiscal year and constitute a 

contract between the DoD and the airlines for a number of guaranteed payments for 

particular routes flown.  These payments are made at the time service is provided unless 

the DoD under-tasks relative to the fixed buy, in which case the difference is dispensed at 

the end of the fiscal year.  “Expansion buys” are anything tasked above and beyond the 

fixed buy due to unforeseen or underestimated requirements.  Figure 3 shows the relative 

proportion of fixed buy to expansion buy through 2007, with estimates thereafter.  

Although the expansion buys have become much greater in terms of total revenue, it is 

the fixed buy that offers a more effective incentive.  According to the CBO, “those 

guaranteed payments are a particularly attractive incentive to carriers to participate in the 

Civil Reserve Air Fleet because they can count on those funds in formulating their annual 

business plans” (Arthur: 4).   

As Figure 3 indicates, the proportion of fixed buy to expansion buy is already too 

low, meaning the fixed buy incentive leaves much room for optimization.  In addition, 

the DoD is predicting a drop in its need for commercial airlift support after the war in 
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 Afghanistan ceases, which in turn will lead to a drop in the potential fixed buy incentive.   

Taken together, these threats to the fixed-buy incentive spurred another proposal 

to adjust the CRAF incentive:  an increase to the proportion of business guaranteed in the 

fixed buy.  This FY08 DoD proposal would take a rolling average of the total (fixed + 

expansion buy) business over the previous five years, omitting any unusually high 

outliers.  The DoD would then be able to offer up to 80% of this rolling average in the 

fixed buy (Arthur: 2).  The success of this method is dependent on the accuracy of the 

rolling average method, which is also a type of time series forecast.  Although it was 

never implemented, it may resurface in a future attempt at higher fidelity forecasts.  In 

Figure 3: Fixed vs. Expansion Buys
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Appendix B, the researcher proposes that the model put forth in this paper is an 

improvement to the moving average proposal.   

Demand Forecasting 

 Demand forecasting is an integral part of many operational and financial 

concerns, and as such a wide variety of research can be found in the literature addressing 

the topic.  For example, Stoimenova, et. al. investigated using time-series models to 

forecast demand for electricity, concluding their forecasts would be useful in predicting 

periods of peak demand, capacity and maintenance planning, and investment decisions.   

Chen, et. al. investigated demand planning approaches to forecasting the need for safety 

stock in business, arguing that “with the globalization of demand–supply networks and 

the desire for a more integrated operation plan, demand planning is now one of the 

greatest challenges facing manufacturers” (Chen, et. al.: 1).  Velonius used linear 

regression to predict supply and demand levels for freight tankers, thus creating an 

overall model to forecast tanker freight rates.  The preceding examples show application 

in the utility, manufacturing, and transportation sectors of the economy. 

While good information can be gleaned from an analysis of forecasting as applied 

in these various circumstances, the researcher narrowed the literature to forecasting 

phenomena in the realm of aviation so as to more closely follow the subject of this 

research.  An excellent work discussing many forecasting techniques applicable to air 

passenger demand is “New Directions for Forecasting Air Travel Passenger Demand” by 

Garvett and Taneja.  Although published in 1974, the paper discusses many forecasting 

techniques still relied on today.  As the authors put it, despite recent developments in new 
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methods for forecasting (the Box-Jenkins, or ARIMA, method used in this paper was new 

at the time) “we are still a long way from possessing tools which provide our decision-

makers with more effective, that is, more useful, accurate and timely information” 

(Garvett: 1, italics added).  As stated, this research seeks to provide exactly such a tool.  

Garvett and Taneja distinguish between qualitative and quantitative approaches to 

forecasting.  The qualitative techniques are used when little historical data exists, or 

otherwise if the trend of the historical data is expected to change.  Therefore the 

qualitative techniques are better suited to big-picture, strategic type forecasts, dealing 

more with what is possible than in the timing of specific events.  Examples of qualitative 

forecasting include S-curve, Delphi studies, and morphological analysis (Garvett: 3-5). 

Quantitative techniques are more widely used.  They depend on a body of 

historical data from which to extend an historical trend.  Quantitative techniques can be 

divided into time-series methods and causal methods.  Time-series methods are generally 

analyses of one-parameter data taken over regularly-spaced time intervals, whose trends 

can be extended to predict future events.  Examples include moving averages, spectral 

analysis, and the Box-Jenkins method.  Causal methods seek to quantify the effect of 

individual (independent) variables on the output in question.  These methods are less 

time-dependent and more event-dependent.  Examples include regression models, 

Bayesian analysis, Markov chains, input-output analysis, simulation methods and control 

theory models (Garvett: 3-5). 

More will be discussed on the specifics of time-series techniques in the section 

III, Methodology.  However, it is fair to say that the Garvett and Taneja paper addresses 
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various techniques and gives strengths and weaknesses thereof as they apply to aviation 

demand in general.  They do not propose a single model to solve a given problem in 

particular.  They conclude that air travel demand prediction models post-1974 would 

likely be structural in nature, meaning the underlying causal factors determining demand 

would be modeled.  Identifying these casual factors, such as through a regression model, 

enables an accurate forecast of the effects of future changes (Garvett: 159).  Yet the 

authors also make the following two points regarding time-series analysis which are 

apropos to this research effort:  

 First, while other methods may appear more appealing based on theoretical 
grounds, data may not be available to justify their use.  

 Second, a model's simplicity is in the mind of its user. Box-Jenkins methods 
and spectral analysis can hardly be classified as "simple and rough" and their 
use has considerably increased the validity of trend-extrapolation (Garvett: 
19) 

A final point they make regards adaptive forecasting.  Static forecasts simply fit a 

smoothing equation to data from a set timeframe, determining constants and smoothing 

parameters which best fit that data.  Future known values are not fed back into the model 

to enable adaption of the model to changing conditions.  Garvett and Taneja suggest use 

of adaptive forecasting, in which the model is updated with new data.  Two types of 

adaptive forecasting exist; in the first, the model itself changes through addition or 

subtraction of variables.  Of this type, they argue “it is rare that the addition of new 

variables will correct misspecification errors in a weak model” (Garvett: 20).  Instead the 

authors advocate the second type, in which the basic structure of the model itself remains 

intact, but the parameters and constants of the model are updated to best fit the new data.  
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The Box-Jenkins approach is an example of a model designed to be updated as new data 

is input, and thus is an adaptive forecasting technique (Garvett:29). 

Another informative piece is Wickham’s 1995 doctoral thesis, “Evaluation of 

Forecasting Techniques for Short-Term Demand of Air Transportation”.  In it he writes 

that forecasting short-term demand is crucial to the airline industry, enabling them to 

make tactical decisions and plan their transportation “supply” to meet market demand.   

  Source: Wickham 

Wickham compared variations on seven different models to determine their 

effectiveness in predicting passenger demand on a particular 18-week set of data (Table 

3).  The goal was to predict future demand while also testing the effects of limiting the 

quantity of historical data and extending the forecast period.  The time series approaches 

used simple mean and exponential smoothing (without seasonality).  The regression 

models assumed a relationship between passenger demand on the day in question and 

Table 3: Summary of Wickham's Models 
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passenger demand seven days prior.  The many “pickup” models related the quantity 

demanded on the day in question to the quantity already booked on day n, plus the 

expected number of “pickups” between day n and the day of takeoff; in essence, these 

models are hybrids incorporating both previous techniques.  The classical pickup models 

only use data from flights already departed to average the number of expected “pickups” 

n days out.  The advanced pickup models also include bookings made for flights that 

have yet to take off, thereby increasing the data pool by adding more recent data 

(Wickham: 45-54).  His conclusions showed that the pickup models did better than both 

time series and regression models, with the advanced  pickup models achieving the best 

results.  

Applying Wickham’s study to this research, the first observation is that the time 

series models used were of the simplest design and did not incorporate seasonality.  

Wickham’s own research highlights that “seasonal variation occurs quite naturally in the 

demand for air travel”, with holidays causing spikes and the whole first quarter of the 

calendar year constituting the “off-season” (Wickham: 22).  However, the data he 

selected for analysis did not span a complete calendar year, and so he was unable to 

incorporate seasonal indices into the data set.  Wickham assumes this omission will have 

little effect, but that assumption leaves much room for error and is a weakness in the 

study (Wickham: 67).  In addition, the pickup models don’t immediately translate to the 

forecasting of cargo demand.  The concept of a hybrid approach, however, might have 

merit here and will be recommended as an area for future study. 
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A final relevant article presented under demand forecasting is “Air Cargo 

Demand Prediction”, by Totamane et. al.  As the title indicates, this 2009 article deals 

directly with predicting air cargo demand where the previous two did not.  However, 

while the preceding articles used time-series analysis in their analysis, Totamane uses a 

technique called a weighted majority algorithm.  The purpose of their research was to use 

demand prediction to help tailor a commercial airline’s flight schedule and cargo capacity 

plan, in order to optimize both load factors and delivery success rates (Totamane).   

While this technique is not informative of the method used in this paper, it is 

nevertheless briefly included in the literature review to reveal the type of forecasting that 

has been applied to air cargo in particular.  The weighted majority algorithm, as applied 

by Totamane, allows for an airline to select certain predictors of cargo demand such as 

day-of-the-week cargo data, projected regional economic growth, quarterly cargo supply 

averages, special occasion (holiday) historical data, and naïve predictors.  The airline 

then relies on its booking agents’ skills at interpreting these predictors, giving each agent 

a weight according to their record of accuracy.  The weighted majority algorithm then 

assembles a demand forecast by integrating the weighted estimates of each predictor by 

the many agents for any given day (Totamane). 

Sustainment Cargo Airlift Demand Forecasting   

The researcher found only one published piece dealing directly with the subject of 

this paper.  Billion and Regan’s 1966 presentation “A Methodology for Accurately 

Predicting Demand for Airlift of Military Cargo to Overseas Destinations” is a relevant, 

if dated, research effort.  The authors were commissioned by the DoD to measure the 
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economic benefit gained by using the newly acquired C-5A strategic airlifter to help 

satisfy peacetime cargo movements (Billion).  They were critical of time-series 

extrapolations as applied to air cargo demand in the commercial sector, arguing such 

methods were not successful in terms of forecasting actual cargo weights delivered.  

Figure 4, taken from their paper, seems to support this claim.  Thus, instead of applying 

time-series forecasting to the prediction of military resupply the authors created a new 

model based on the quantity and frequency of demand for specific commodities to 

overseas destinations.  In effect, the model was a tool to help decide which resupply 

commodities might be more economically flown by air than transported by sea to 

resupply DoD bases.  The relevant costs considered were loss and damage, packaging, 

pipeline, in transit warehousing, inland line haul, and line haul costs.   

Billions and Regan’s research made extensive use of “approximately 3.8 million 

commodities and millions of shipments recorded on magnetic automatic data processing 

Figure 4: Air Freight Forecasts Compared with Tonnage Generated (US Domestic) 
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tapes” (Billions).  Their model seems like a good predictor of demand for static 

conditions.  That is, their model depended on calculating elasticity of demand for specific 

commodities to the DoD’s overseas footprint as it existed in 1966 or as it was projected 

to be in the coming years.  As they explained, “the data base for the work is necessarily 

empirical, but demand for certain classes of commodities can be correlated with present 

force structures.  By basing calculations on Joint Chiefs of Staff estimates of force 

structures in the 1970’s, the total demand can be projected…” (Billions).  The data is a 

good fit for the known force structure, but is dependent on JCS predictions of future 

overseas force structure for its forecasting accuracy.  This pegs the accuracy of their 

model to that of JCS force structure projections, leaving them open to the type of error 

seen in Figure 4 above.   

In addition, as Garvett advised, the better model is the one whose structure is 

maintained but whose parameters are updated as new data are available.  The Billions and 

Regan model would have to be fully reconstructed as old commodities become obsolete 

and new ones are added,  as well as whenever overseas force structures undergo 

meaningful change.  Referring back to Figure 1, Boots on Ground, this would be labor 

intensive indeed if applied to the wars in Southwest Asia. 

Finally, their critique of time-series forecasting predates the newer, more 

powerful time-series techniques used in this work.  Box and Jenkins, for example, 

published their work on ARIMA techniques in 1970.  The many smoothing techniques 

described later in Methodology weren’t proposed until 1957 by Holt, and it wasn’t until 

1963 that the forms commonly used today were put forward by Brown.  The predictions 
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graphed in Figure 4 were mostly made in the 1950s during a period punctuated with 

growth spurts in the domestic airline industry.  The models underlying those predictions 

were not presented, but since the forecasting community has since moved on to more 

effective methods that also better model trending and seasonality it is a safe assumption 

that the authors’ critique needs to be revisited. 

Summary 

This literature review presented background information on the CRAF program to 

explain why the program participants desire a long range business forecast from the DoD.  

The review then covered demand forecasting, revealing its widespread use and giving 

examples of various forecasting techniques as they are applied to specific uses.  The 

researcher then focused on demand forecasting for air industry concerns, including 

forecasts for both passenger and cargo demands, and discussed the one example which 

closely mirrors this research effort.  The research reveals the following points which set 

the stage for this research effort: 

1. Previous relevant time-series applications did not use the more powerful 
techniques available today 

2. Previous time-series applications may have been misapplied with respect 
to accurately modeling trends and inclusion of seasonality 

3. An adaptive model, whose structure remains intact as its parameters are 
updated by new data, is preferable to a static model, or to one whose 
structure must change to adapt 

Therefore, this research applies the more powerful time-series methods to create 

an adaptive tool for decision makers in industry and the DoD alike. 
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III.  Methodology 

Chapter Overview 

The DoD maintains a number of bases within USCENTCOM, where both Iraq 

and Afghanistan AORs reside.  While this list of bases sometimes changes, most of the 

significant locations remain.  Appendix A lists the locations included in this research 

effort.  Shipment histories to and from these fields (and all other DoD fields) are recorded 

in the GATES database.  Understandably, this database is very large and in the context of 

data analysis can be unwieldy.  This chapter explains how the researcher scoped the data 

to the pertinent entries and describes the data itself, detailing which fields are significant 

to the research and what information can be gleaned from them.  Thereafter is presented a 

discussion of the different time-series methods employed in analyzing the data.  Finally, 

this chapter discusses model formulation to include a description of the JMP software 

used for data analysis. 

Scope and Data Description 

 An important first step for this research was scoping the data.  The data sources 

are GATES databases for FY2005-FY2011, provided as Microsoft Access files by Air 

Mobility Command.  The researcher exported these database files into Microsoft Excel 

for data reduction.  The typical fiscal year of GATES cargo data contains approximately 

300,000 entries, where an entry is the movement of a particular piece of cargo between 

two locations.  Fortunately, the GATES database is a wealth of information regarding the 

shipment of each cargo piece.  There are 30 fields (database columns) which in part: 

identify the cargo (mission and cargo ID numbers), describe the cargo (volume, height 



 

22 

and weight, rolling stock or pallet), describe the locations of transportation nodes (APOE, 

or aerial port of embarkation, and APOD, or aerial port of debarkation), list departure and 

arrival dates and times, and give the final destination of each line of cargo (pallet APOD).  

This last field is significant, as the landing airfield for an aircraft flying a particular entry 

in the GATES database is often not the final destination of that cargo, i.e. the mission 

APOD is not necessarily the pallet APOD.  This happens anytime cargo makes an 

enroute stop, either to be transloaded or for that aircraft to accumulate more cargo.   

 As alluded to, this research approximates sustainment cargo as equivalent to 

channel cargo.  Singling out channel cargo is made possible by decoding the mission ID.  

Air Mobility Command’s “MAF Mission ID Encode/Decode Procedures” holds the key 

to this coding (Table 4). 

Table 4: Decoding Channel Missions 

 

The researcher applied the following process using Excel macros to focus the data: 

1. The first step was to limit the database to channel cargo, meaning those entries 
whose mission ID had a “B” for the second character.   

2. Next the Pacific missions were removed (C and P values from the “third 
character” column in Table 4). 
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3. Then all entries whose  pallet APODs were NOT on the scoped list in Appendix 
A were removed, including entries for which pallet APOD was blank (generally 
some small number were). 

4. Finally, entries with duplicate pallet IDs had to be reduced to one representative 
entry.  This step addressed the problem outlined above, where pallets might be 
counted multiple times due to enroute stops, artificially increasing the measured 
demand signal. 
 

These steps reduced the data by roughly 75%, leaving the researcher with data 

representing sustainment cargo to fields within USCENTCOM, predominantly in the Iraq 

and Afghanistan AORs.  It should be noted that not all airfields retained in the model fall 

into those two AORs.  The other retained USCENTCOM locations were, in the 

researcher’s estimation, significant hubs for operations enabling activities in Iraq and 

Afghanistan, or otherwise nevertheless contributors to the demand signal for strategic 

airlift of sustainment cargo into USCENTCOM.   

An interesting point became evident during data reduction:  disaggregating the data 

led to better model results. This concept is supported in the research as well:  

“Aggregation during the model construction phase of the analysis will cloud the 

underlying behavioral relationships and will result in loss of information.  It is always 

desirable to estimate a model at the disaggregate level” (Ben-Akiva: 62).  For this 

research the data is disaggregated into subsets:  Iraq data into one subset, and 

Afghanistan plus all other modeled CENTCOM fields into the other (hereafter referred to 

as Afghanistan+).  The Iraq data is modeled separately for two reasons.  Firstly, 

operations in Iraq have almost entirely come to a close, so modeling Iraq demand 

separately describes its contribution to the historical data while allowing it to be removed 

from the predictive tool going forward.  Secondly, the Iraq and Afghanistan AORs can 
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conceivably have distinct demand signals, each with their own seasonality, thus separate 

models are appropriate. 

  The quantity of available data is sufficient to create a forecasting model.  The 

significant fields in the GATES data are the dates and locations of each entry, which 

allowed the researcher to filter the data by location, sum the gross weights (demand) and 

group these totals by date.  The remaining GATES columns do not add significant 

information pertaining to forecasting of demand.  Given data primarily describing gross 

weight delivered over time to particular locations, time-series forecasting methods are a 

natural fit.  

Forecasting Techniques 

This section describes the time-series forecasting methods applied in this 

research, with the addition of naïve and moving average forecasts as background.  They 

are presented in order of increasing functionality. 

Naïve Forecasts and Simple Moving Averages 

Naïve forecasts predict the next value of a function to be equal to the last 

observed value.  While simplistic, there are situations when this approach can achieve 

adequate results.  An added benefit is its independence from the need for large data sets 

and computing power.  The equation of a naïve forecast is shown below: 
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(1) 

Where: 
Ŷ = forecast value 
 

The moving average model takes the average value of the series over the previous 

k observations.  A k value of 1 would be a naïve forecast, whereas a k value which 

includes all series observations would simply be the series mean.  Averaging mitigates 

the rapid changes which can occur with naïve forecasting (Duke.edu).  An example 

equation follows:   

 

(2) 

Where: 

Ŷ = forecast value 

Simple Exponential Smoothing 

The simple moving average model above only incorporates the previous k 

observations, which it weights equally.  The idea behind exponential smoothing is to 

incorporate all series values in forming the model, while giving the more recent values 

more weight as it is assumed they are more relevant to predicting the next series value.  

The technique is called “exponential” because the weighting is done using a geometric 

series.  Substituting previous values for Y on the right side of Equation 3 would introduce 

tkt YY 
ˆ

Equation 1: Naïve Forecast

k
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t

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1

Equation 2: Simple Moving Average
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these terms.  The choice of α is very important to optimizing the model.  High α values 

put more weight on the most recent observation, while low α values put more weight on 

historical values (psu.edu).  An advantage of this model over the moving average is that it 

is adaptive:  α can be continually updated with new data to optimize the model, usually 

by minimizing the mean squared error (duke.edu).  The model takes the form: 

 

(3)

Where: 
Ŷ = forecast value 
  = mean term smoothing constant between 0 and 1 
e = the prediction error 

 

Double (Brown’s) Exponential Smoothing 

Double exponential smoothing can model a trend in the data, indicating by a 

series mean which varies over time such that it is described by a sloped line.  This model 

combines a smoothed value of the mean term with a smoothed value of the first 

differences of the mean term and includes the smoothing constant.  The model is 

adaptive, addresses trending, but does not address seasonality.  Its equations follow: 

 

(4.1)

(4.2)

(4.3)

Where: 
L  = smoothed value of mean term 

ttt eYY )1(ˆ
1 

Equation 3: Simple Exponential Smoothing
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1)1(  ttt LYL 

Equation 4: Double Exponential Smoothing
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T  = smoothed value of estimated trend 
  = mean term smoothing constant between 0 and 1 

Ŷ = forecast value 
 

Linear (Holt’s) Exponential Smoothing 

Linear exponential smoothing is another approach to modeling trend in the data, 

but differs because it includes a second smoothing constant which can also be optimized.  

Its equations follow: 

 

(5.1) 
 

(5.2) 
 

(5.3)

Where: 
L  = smoothed value of mean term 
T  = smoothed value of estimated trend 
  = smoothing constant between 0 and 1 
  = trend smoothing constant between 0 and 1 

Ŷ = forecast value 
 

Seasonal Exponential Smoothing 

By now it is obvious that each successive smoothing model builds on the original 

simple exponential smoothing model by adding some new aspect of the data to improve 

accuracy.  The seasonal exponential smoothing model adds a seasonality component, 

although it does not include trending.  That is, the data show a tendency toward some 

periodicity, but the mean tends to remain constant.  The modeling equations follow: 

ttt kTLkY )(ˆ

11 )1()(   tttt TLLT 

))(1( 11   tttt TLYL 

Equation 5: Linear Exponential Smoothing
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(6.1)

(6.2)

(6.3)

Where: 
L  = smoothed value of mean term 
S  = smoothed value of seasonality term 
  = smoothing constant between 0 and 1 
  = seasonality smoothing constant between 0 and 1 

Ŷ = forecast value 
 

Winters Method 

The final method presented under the smoothing models is Winters method.  It 

incorporates the smoothed mean term, smoothed trending term, and smoothed seasonality 

term, each with their own smoothing constant which can be optimized to fit new data.  

The equations which form this model are: 

 

(7.1)

(7.2)

(7.3)

(7.4)

Where: 
L  = smoothed value of mean term 
T = smoothed value of the trending term 
S  = smoothed value of seasonality term 
  = smoothing constant between 0 and 1 
  = trending smoothing constant between 0 and 1 
  = seasonality smoothing constant between 0 and 1 

kpttt SLkY )(ˆ

ptttt SLYS  )1()( 

1)1()(   tpttt LSYL 

kpttt SkTLkY  1)(ˆ

11 )1()(   tttt TLLT 

))(1()( 11   ttpttt TLSYL 

Equation 6: Seasonal Exponential Smoothing

ptttt SLYS  )1()( 

Equation 7: Winters Method
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Ŷ = forecast value 

 

ARIMA (Box-Jenkins) Method 

ARIMA stands for “Auto-Regressive Integrated Moving Average”.  This method, 

formulated by Box and Jenkins in 1970, is actually a more general form of every 

smoothing equation already presented.  Stated another way, for each of the preceding 

smoothing model functions, there exists a corresponding and equivalent ARIMA 

function—see Table 5.  The auto-regressive (AR) term is a linear regression of the value 

of a series observation against one or more previous series values.  Thus the AR term is 

fitted to previous values of the series.  The moving average (MA) term is a linear 

regression of the current series value on the noise evident in preceding observations in the 

series.  Thus the MA term is fitted to previous values of noise in the series—actually, to 

all previous values of noise in the series.  The term “integrated” (I) applies when the 

series must first be ‘differenced’ before applying the AR and/or MA analysis (NIST.gov).   

Differencing is done to satisfy a prerequisite for ARIMA application, namely that 

the series is stationary with respect to its mean.  If the series mean is not already 

stationary, this can be accomplished by subtracting the series mean from the series value 

at each point.  If differencing one time (first differencing) does not achieve stationarity, 

the second difference can be taken.  As a general rule, higher orders of differencing are 

not advisable (Duke.edu).  Whatever degree of differencing that is applied during model 

creation must be removed, or integrated, before expressing the resultant time-series 

function. 
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Table 5: Smoothing Model and ARIMA Equivalence 

Smoothing Model ARIMA Equivalent 

Simple Exponential Smoothing ARIMA (0,1,1) 

Double Exponential Smoothing ARIMA (0,2,2) 

Linear Exponential Smoothing ARIMA (0,2,2) 

Seasonal Exponential Smoothing ARIMA (0,1, p+1)(0,1,0)p 

Winters Method ARIMA (0,1, p+1)(0,1,0)p 

 

The ARIMA model is identified using the convention ARIMA(p,d,q), where p 

indicates the order of the AR term, d indicates the order of differencing (the I term), and 

q indicates the order of the MA term.  The challenge in applying this method is in 

determining these values.  Duke University’s website is extremely useful in providing 

guidance toward forming the model—their rules for identifying ARIMA models are 

reprinted in Appendix D.  Following these rules, the researcher tested the ARIMA(0,1,1) 

model.  

Seasonal ARIMA 

Seasonal ARIMA adds a seasonal term whose convention is similar to the original 

term.  The new convention is (S)ARIMA(p,d,q)(P,D,Q), where some texts add the S and 

some do not.  P indicates the order of the AR term within seasonality, D indicates the 

order of differencing for the seasonality term, and Q is the order of the MA seasonality 

term.  P, D, and Q can be different values than p, d, and q.  Thus, one possible example 
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might be ARIMA(0,1,1)(1,0,0).  However, the rules in Appendix D led the researcher to 

test an ARIMA(0,1,1)(0,1,1) model for this data set. 

Model Development  

The researcher used JMP 8.0 by SAS to analyze the data after completing the 

Excel filtering and grouping.  JMP was used to plot the original series, perform time-

series analysis using each of the above smoothing and ARIMA methods, and compare the 

results.  For each method JMP displays a model summary listing various goodness-of-fit 

measurements, parameter estimates, a forecast graph depicting the model superimposed 

on the data, and information on the residuals.  JMP also displays a chart comparing and 

ranking each method applied.  The next section, Analysis and Results, presents these JMP 

outputs and decides on the best model to forecast demand for airlift of sustainment cargo. 

Summary 

The researcher’s data is sourced from the GATES database, FY 2005-2011.  

Because each year of data is roughly 300,000 lines of cargo movement, most unrelated to 

sustainment demand in the USCENTCOM region, the researcher used Excel coding to 

perform four steps to filter and group the data.  The scoped data, roughly 25% of the 

original data set, was then analyzed in JMP using the exponential smoothing and ARIMA 

methods described above.  It is also noted that each smoothing equation can be described 

by an ARIMA equation.  The next section will attest to this fact, as the best model fit and 

its ARIMA equivalent are almost equivalent in their model summary scores. 
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IV.  Analysis and Results 

Chapter Overview 

This section presents and analyzes the JMP model-fitting results for a one-year 

forecast for the Iraq and Afghanistan+ data subsets, using the methods just discussed.  

Time series analysis requires data to be grouped into regular intervals; this research looks 

at both weekly and monthly groupings.  The models, built using FY 05-10 data, are 

compared on the basis of the goodness-of-fit measures explained and presented below.  

The best-fit model for each grouping is then validated using FY11 data, and their 

forecasts and residuals are presented graphically.  Validation techniques are also 

explained in this section.  Appendix I builds a model for Kandahar AB, Afghanistan, to 

demonstrate the three-month forecast tool for use by DoD planners. 

Goodness-of-Fit Measures 

JMP outputs a number of goodness-of-fit measures.  The RSquare, MAPE, and 

MAE values give an indication of how well the model fits the historical data.  The -

2LogLikelihood, Akaike’s ‘A’ Information Criteria, and Schwartz’s Bayesian Criterion 

values incorporate a penalty for model complexity (number of parameters), and are useful 

in ranking multiple models against one another.  It is important to note that none of these 

measures indicate how well a model will predict future values; holding data in reserve for 

model validation serves this purpose.  The goodness-of-fit measures are briefly defined 

below as background for the JMP outputs that follow in this section.   
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-2LogLikelihood 

 The likelihood function describes the probability density function for a model’s 

parameter value(s) given realized outcomes of the model’s random variable(s) 

(Rutgers.edu).  A model can be described as the family of probability density functions 

that attempt to describe some phenomenon, with a model’s parameter influencing the 

shape of that density function.  In the inverse, when we already have known data values, 

we want to solve for the model parameter that shapes the density function such that the 

known outcome is the most probable outcome (Myung: 3).  In the context of time series 

forecasting, with historical data being fit, the likelihood function gives the probability 

that the historical data is resultant from a particular model parameter value.  This 

likelihood function can be maximized, that is, it can be solved for the parameter that best 

fits the data.  Maximizing the function is often made mathematically easier by first taking 

the log of the function (Myung: 4).  Therefore, -2LogLikelihood is minus two times the 

natural log of the likelihood function using the best-fit parameter.  Smaller values 

indicate a better fit (JMP Support).  A weakness of the likelihood function is that it does 

not penalize for higher numbers of parameters; judging a model by -2LogLikelihood 

alone might result in over-parameterization—improving the model’s fit by inflating the 

goodness-of-fit measures with extraneous parameters. 

Akaike’s ‘A’ Information Criterion 

Akaike’s Information Criterion, or AIC,  alters the -2LogLikelihood as follows: 
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 The AIC method adds a penalty for each additional parameter, thus discouraging 

over-parameterization.  In model selection, lower AIC values are better. 

Schwarz’s Bayesian Criterion 

Schwarz’s Bayesian Criterion, or SBC, is mathematically defined as: 

 

Like AIC, SBC adds a penalty for each additional parameter.  Lower SBC values 

indicate a better model. 

RSquare 

RSquare measures the percent of variation in a series accounted for by a given model.  It 

is computed by: 

Equation 8: Akaike's Information Criterion 

(8)

Where: 
 
m = # parameters in model 

 

 

Equation 9: Schwarz's Bayesian Criterion 

 (9)

Where: 
 
m = # parameters in model 
N = # of observations 

2m + likelihood log 2- =AIC

logN m + likelihood log 2- =SBC
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It can be seen that if sum of squares error (SSE) is larger than the sum of squares 

total (SST), RSquare will be negative, indicating a poor fit.  On the other hand, an 

RSquare approaching a value of one would indicate a very small SSE in relation to SST, 

indicating a good model fit. 

RSquare Adjusted 

The adjusted RSquare value attempts to correct over-parameterization of a model 

by offsetting the RSquare score as more parameters are added.  Without adjusting 

RSquare, we could expect the RSquare value to increase as the number of model 

parameters increase, although this “better” score likely does not translate to better 

predictive value.  Therefore, adjusted RSquare is better at judging model accuracy while 

also deterring overuse of parameters.  It is given by the following equation: 

 
 

Equation 10: RSquare 

 (10)
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Equation 11: RSquare Adjusted 

(11)
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MAE 

 The mean absolute error, or MAE, expresses the series mean of the absolute error: 
 

 
 
 Expressing the error in absolute terms ensures that errors of opposite sign do not 

have a cancelling effect.  The unit of error is tied to the unit of the series data, making 

MAE difficult to use in comparing data sets of differing units. 

 MAPE 

The mean absolute percent error, or MAPE, expresses the series mean of the 

absolute value of the fit error as a percent: 

Where: 
 
m = # parameters in model 
N = # of observations 

 

 

Equation 12: Mean Absolute Error 

 (12)

Where: 
 

iŷ = the forecast series values 
N = # of observations 

 

 

Equation 13: Mean Absolute Percent Error 

 (13)

Where: 
 

iŷ = the forecast series values 
N = # of observations 
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Expressing the error as a percent lends the advantage of comparing data sets 

expressed in different units (e.g. demand expressed in pounds vs. kg).  MAPE is a simple 

and effective measurement of fit accuracy, yet it has the potential drawbacks of being 

undefined for any series value equal to zero, and being unbounded in terms of upper 

value.  For the GATES data sample in this research, none of the aggregate demand values 

are zero.   

AIC and SBC, as described above, arrive at parameter values by determining 

maximum likelihood estimation (MLE) for a parameter.  RSquare attempts to minimize 

the sum of the squared errors, and therefore applies a least-squared error (LSE) method.  

These two approaches often yield different results, and when this occurs the MLE 

approach should be preferred (Myung: 6).  Indeed, JMP solves for the model parameters 

using the log likelihood, an MLE approach upon which AIC and SBC are computed.  The 

model goodness-of-fit outputs that follow are assessed according to their AIC and SBC 

values, MAPE values, and RSquare.   

Validation Measures 

Whereas goodness-of-fit measures assess how well a model matches the historical 

data, validation determines how well the model “performs” on future data.  Model 

validation techniques include plotting the actual versus predicted “future” data, and 

computing values for the root mean square error of validation (RMSEv) and reduction of 

error (RE) statistics.  These measures are defined below. 
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RMSEv 

The root mean square error of validation is the mean size of the prediction error 

during the validation period.  Comparing RMSEv to the RMSEc (calibration period 

RMSE, using historical data) gives an indication of model performance.  RMSEv will 

generally be somewhat larger than RMSEc, as the latter is intentionally fit to the 

historical data.  If the difference between the two is “small”, the model is considered 

validated.  Determining what constitutes “small” is a somewhat subjective matter 

(Arizona.edu: 4). 

 

 

Reduction of Error 

The reduction of error statistic is analogous to the RSquare goodness-of-fit 

measurement.  It can range in values from negative infinity to one.  There are two ways 

to interpret this statistic.  First, with negative values the model is considered a poor 

predictor.  Positive values indicate some degree of predictive quality, and a value of one 

indicates perfect prediction.  The second interpretation is to compare the RE value to the 

 
 

Equation 14: Root Mean Square Error of Validation 

 (14)

Where: 
 

iŷ = the forecast series values 
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RSquare value; if they are “close” in value the model is considered validated.  Again 

there is a degree of subjectivity inherent in the validation process (Arizona.edu: 4). 

Weekly Grouping Models 

Iraq Model 

 

Figure 5: Time Series of Weekly Iraq Demand, Jan 2005-Sep 2010 

 
 Weekly Iraq demand from January 2005 through September 2010 is shown 

graphically in Figure 5, an output of JMP’s time series analysis.  It is evident that the 

demand from Iraq peaked early, leveled off through March of 2009, and has declined 

since.  A seasonal pattern is also present, with a 52-week cycle. 

The JMP model comparison output for the exponential smoothing and ARIMA 

techniques is presented in Figure 6.  The AIC and SBC rankings for seasonal exponential 

 

Equation 15: Reduction of Error 

n 

 (15)

Where: 
 

iŷ = the forecast series values 

cy = the mean series prediction over calibration period 

vN = # of observations in validation period 
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smoothing and the seasonal ARIMA models are 1 and 2, although they disagree on which 

is the better of the two.   

The RSquare for these two methods are actually lower, and MAPE values higher 

than those of the remaining methods; the highest RSquare values are for the simple 

exponential smoothing and ARIMA models.  Thus the goodness-of-fit criteria give 

conflicting indications for model selection, but a look at the forecast graphs in Appendix 

E helps to influence model choice.  It can be seen that the non-seasonal methods give a 

linear forecast which doesn’t very well approximate the seasonal influence on demand; 

yet due to the drawdown in Iraq, the seasonal influence on demand is largely diminished.  

In addition, aside from the simple exponential smoothing model, the rest predict negative 

values of demand.  

Model Selection 

On the basis of the model comparison chart in Figure 6 and the forecast graphs in 

Appendix E, the researcher chooses the simple exponential smoothing model for further 

analysis and validation.  The final steps in forming the model are a check of the residual 

plot and a validation of the model on a portion of the data. 

Figure 6: Model Comparison, Iraq Weekly Demand 
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The residuals chart for the selected model is shown in Figure 7.  There is a 

narrowing tendency in the residuals plot attributable to the twilighting of the conflict, but 

overall the graph shows a normally distributed plot of residuals with a mean of zero. 

 

Figure 7: Residuals Plot for SES, Weekly Iraq Demand 

 
Finally, The resulting fit and forecast graph is given in Figure 8.   

 

Figure 8: SES Forecast, Weekly Iraq Demand 

Focusing on the forecasted region, and in keeping with the primary research 

objective, the following graph shows the predicted versus actual values for the series over 

a one year forecast period. 
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Model Validation 

Table 6: Validation Statistics for Simple Exponential Smoothing Model 

 

Table 6 shows the validation statistics for the chosen simple exponential 

smoothing model.  In this case the RMSE values are not roughly equivalent, which 

actually supports previous observations about the Iraq data.  The demand became much 

easier to predict with the drawdown, which is why the residuals plot (Figure 7) narrowed 

as well.  However, the validation period shows an explainable increased accuracy, not a 

failure in the forecast model.  The RE and R2 values are closer in value, with RE almost 

equal to one.  Therefore, the model is considered validated.   

Model Equation 

The model equation is given by Equation 3.  The smoothing constant as computed 

by JMP is:    = 0.4897, with a t-ratio of 8.32.  Ratios greater than two are significant. 

Figure 9: SES 1 -Year Forecast, Weekly Iraq Demand 
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Afghanistan+ Model 

Weekly Afghanistan+ demand from January 2005 through September 2010 is 

shown graphically in Figure 10.  The demand curve saw a reduction from the beginning 

of 2005 through 2009, likely due to sharing resources with Iraq operations.  Post-Iraq 

demand is definitely higher, corresponding with the increase in boots-on-ground in 

Afghanistan from Figure 1.  A seasonal pattern is also present, with a 52-week cycle. 

The JMP model comparison output for the exponential smoothing and ARIMA 

techniques is presented in Figure 11.  The AIC and SBC rankings agree on seasonal 

exponential smoothing as the best model.  The RSquare for this method, while not the 

highest, is grouped closely with the best RSquare models.  Yet the MAPE values are 

higher than most of the remaining methods.   

Figure 11: Model Comparison, Weekly Afghanistan+ Demand 

Figure 10: Time Series of Weekly Afghanistan+ Demand, Jan 2005 – Sep 2010 



 

44 

Again the goodness-of-fit criteria give conflicting indications for model selection, 

so the forecast graphs in Appendix F help to influence model choice.  It can be seen that 

the non-seasonal methods give a linear forecast which doesn’t very well approximate the 

seasonal influence on demand.  The seasonal ARIMA model’s forecast increases more 

than should be expected for sustainment operations in what is apparently a new steady 

state (plateau) in demand.    

Model Selection 

On the basis of the model comparison chart in Figure 12 and the forecast graph in 

Appendix F, the researcher chooses the seasonal exponential smoothing model for further 

analysis and validation.  Aside from its MAPE score, which is nevertheless competitive, 

its goodness-of-fit criteria are better than the competition and its forecast graph makes 

sense given current conditions.  The final steps in forming the model are a check of the 

residual plot and a validation of the model on a portion of the data. 

The residuals chart for the selected model is shown in Figure 12.  The residual 

plot looks normally distributed, with constant variance and a mean of zero, as required.   

 

Figure 12: Residuals for Seasonal Exponential Smoothing Model, Weekly Afghanistan+ Demand 
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Finally, the model fit and forecast graph is given in Figure 13.   

 

Focusing on the forecasted region, the Figure 14 shows the predicted versus 

actual values for the series over one year.  The confidence interval is graphed and the 

actual data fall within it. 

Figure 13: Seasonal Exponential Smoothing Forecast, Weekly Afghanistan+ Demand 

Figure 14: Seasonal Exponential Smoothing 1-Year Forecast, Weekly Afghanistan+ Demand 
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Model Validation 

Table 7: Validation Statistics for Seasonal Exponential Smoothing Model 

 

Table 7 shows the validation statistics for the chosen seasonal exponential 

smoothing model.  It is arguable whether the RMSE values are roughly equivalent, but a 

clearer result is given by the strong parity between RE and R2 values.  Given the highly 

positive RE value and its close approximation of R2, the model is considered validated.   

Model Equation 

The model equation is given by Equations 6.1 – 6.3.  The smoothing constants as 

computed by JMP are: 

  = .2486, with a t-ratio of 6.44. 
  = .7728, with a t-ratio of 7.50. 
 
Again, ratios greater than two are considered statistically significant. 
 

Monthly Grouping Models 

Iraq Model 

 

Figure 15: Time Series of Monthly Iraq Demand, Jan 2005 – Sep 2010 
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Monthly Iraq demand from January 2005 through September 2010 is shown 

graphically in Figure 15.  As with the weekly aggregation, the demand from Iraq peaked 

early in the series, leveled off through the beginning of 2009, and has declined since.  A 

slight seasonal pattern is also present, with a 12 month cycle. 

 
The JMP model comparison output for the exponential smoothing and ARIMA 

techniques is presented in Figure 16.  The AIC and SBC rank seasonal exponential 

smoothing as best.  As with weekly demand, the RSquare for the seasonal methods are 

actually lower, and MAPE values higher than those of the remaining methods.  The 

simple exponential smoothing model scores the best RSquare.  Thus the goodness-of-fit 

criteria give conflicting indications for model selection. 

The trending models’ trend parameters do not assess as significantly different 

than the null.  The seasonal models’ seasonal component has a weak t-ratio for the 

seasonal exponential smoothing and Winters methods (.48), although the SARIMA 

model shows a t-ratio of 2.18, which is just high enough to be considered significant.   

The forecast graphs in Appendix G are not significant differentiators.  The 

problem of negative demand prediction is not as pronounced as with the weekly 

Figure 16: Model Comparison, Monthly Iraq Demand
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grouping, but still the simple exponential smoothing model is the only one that does not 

suffer from it.  

Model Selection 

On the basis of the model comparison chart in Figure 16 and the forecast graphs 

in Appendix G, the researcher chose the simple exponential smoothing and SARIMA 

models for further analysis and validation.  The one-year forecasts for each method 

follow: 

Figure 17: SES 1-Year Forecast, Monthly Iraq Demand 

Figure 18: ARIMA(0,1,1)(0,1,1) 1-Year Forecast, Monthly Iraq Demand 



 

49 

The demand pattern in Iraq certainly changed over time due to changes in the 

underlying conditions in Iraq.  With the drawdown complete, the best model for 

predicting future demand is the simple exponential smoothing model.  The researcher’s 

choice of model would likely have been different for example in 2007-2008, when the 

demand fluctuation and seasonality were stronger.  In that case, the SARIMA method 

would likely have provided a better model.  

 

Figure 19: Residuals Plot for SES, Monthly Iraq Demand 
 

The residuals chart for the simple exponential smoothing model is shown in 

Figure 19.  There is a narrowing tendency in the residuals plot attributable to the 

stabilizing of demand as the Iraq conflict nears its conclusion, but overall the graph 

shows a normally distributed plot of residuals centered on zero.  The resulting fit and 

forecast graph is given in Figure 20.   
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Figure 20: SES Forecast, Monthly Iraq Demand 

 

Model Validation 

Table 8: Validation Statistics for Simple Exponential Smoothing Model 

 

Table 8 shows the validation statistics for the chosen simple exponential 

smoothing model.  Again the RMSE values are not roughly equivalent, supporting 

previous observations about the Iraq data.  However, the validation period shows an 

explainable increased accuracy, not a failure in the forecast model.  The RE and R2 

values are closer in value, with RE almost equal to one.  Therefore, the model is 

considered validated.   

 
Model Equation 

The model equation is given by Equation 3.  The smoothing constant as computed 

by JMP is:    = 0.8591, with a t-ratio of 6.53. 
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Afghanistan+ Model 

 
Figure 21: Time Series of Monthly Afghanistan+ Demand, Jan 2005 – Sep 2010 

  
Monthly Afghanistan+ demand from January 2005 through September 2010 is 

shown graphically in Figure 21.  The demand curve saw a reduction from the beginning 

of 2005 through 2009, likely due to sharing resources with Iraq operations.  Post-Iraq 

demand is definitely higher, corresponding with the increase in boots-on-ground in 

Afghanistan from Figure 1.  A slight seasonal pattern with a 12-month cycle also exists. 

The JMP model comparison output for the exponential smoothing and ARIMA 

techniques is presented in Figure 22.  The AIC and SBC rankings agree on seasonal 

ARIMA  as the best model.  The RSquare and MAPE values for this method are also the 

best of the group.  Thus the goodness-of-fit measures all point to Seasonal ARIMA as the 

best model. 

Figure 22: Model Comparison, Monthly Afghanistan+ Demand 
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The forecast graphs in Appendix H again show that the non-seasonal methods are 

not likely candidates for Afghanistan+ fields, which exhibit some seasonality.  The 

seasonal ARIMA model, whose fit characteristics were clearly superior, has a forecast 

that increases more than might be expected for sustainment operations which have 

apparently reached a new steady state.   

Model Selection 

Model validation is required for the seasonal ARIMA model to see if it falls 

victim to a leveling off of demand at the end of the data window.  

 

Figure 23: ARIMA(0,1,1)(0,1,1) Forecast, Monthly Aghanistan+ Demand 

Looking at Figure 23 the SARIMA model continues to predict increased demand, 

but the actual demand has leveled off, causing it to quickly depart from the lower control 

limit of the forecast.  The seasonal exponential smoothing model, also with competitive 

goodness-of-fit criteria in Figure 22, shows a forecast graph in Appendix H that levels 

off.  Figure 24 plots its one-year ahead forecast versus the actual demand.  Based on this 

comparison, the researcher chooses the seasonal exponential smoothing method to model 

monthly Afghanistan+ demand. 
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The residual plot, shown in Figure 25, appears normally distributed with a mean 

variance close to zero.  The model fit and forecast graph is given in Figure 26.

 

Figure 25: Residuals Plot for Seasonal Exponential Smoothing, Monthly Afghanistan+ Demand 

 

 

Figure 26: Seasonal Exponential Smoothing, Monthly Afghanistan+ Demand 
 

Figure 24: Seasonal Exponential Smoothing, Monthly Afghanistan+ Demand 
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Model Validation 

Table 9: Validation Statistics for Seasonal Exponential Smoothing Model 

 

Table 9 shows the validation statistics for the chosen seasonal exponential 

smoothing model.  Again, it is arguable whether the RMSE values are roughly equal, but 

as with the weekly Afghanistan+ model there is a clearer picture in the RE and R2 values.  

The RE value is close to one and very close to R2, and therefore the model is considered 

validated.   

Model Equation 

The model equation is given by Equations 6.1 – 6.3.  The smoothing constants as 

computed by JMP are: 

  = 0.7577, with a t-ratio of 5.59. 
  = 1.000, with a t-ratio of 1.10. 

The low t-ratio for the seasonality constant (less than two) corresponds to a 27.5% chance 

that this smoothing constant is not representative, that is, the seasonality is weak enough 

that the confidence in the calculated value for the seasonality constant is lower than 

desired.  Nonetheless, there is some degree of seasonality in the model. 

Summary 

The weekly and monthly demand data for Iraq and Afghanistan+ airfields were 

analyzed for this research.  Thus four distinct models were created and validated in this 

section.  The researcher applied seven time series techniques to each situation, selecting 
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the most promising model from each for validation.  Model selection was based on a 

blended analysis of goodness-of-fit measures and graphical representation of the forecast 

model.  Each selected model was then validated to assess its performance on withheld 

data.   

Both Afghanistan+ groupings were best fit by a seasonal exponential smoothing 

model, while both Iraq groupings were best fit by a simple exponential smoothing model.  

In the case of the Iraq models, it is important to note that the end of operations in Iraq has 

left very little sustainment demand in that AOR.  Therefore, the model that was selected 

as the best fit moving forward would likely not have been the best fit during the 

campaign.   

Finally, there were mixed results as to which grouping size performed better.  The 

weekly groupings in Iraq had higher RSquare scores for the model fit to historical data.  

However, in the validation period the monthly groupings generally proved better than the 

weekly groupings, as both the Afghanistan+ and Iraq monthly models scored higher RE 

than the weekly models.  However, in validation the Afghanistan+ monthly model had a 

higher deviation in RMSE between validation and historical data periods than did the 

Afghanistan+ weekly model.  
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V.  Conclusions and Recommendations 

Chapter Overview 

This research addresses a void that exists in the creation of a useful and adaptable 

forecasting tool for demand of airlifted sustainment cargo.  Having described the problem 

before the CRAF and military planners, the researcher proposes time series forecasting as 

a solution to this problem.  This section provides the “so-what” of this research effort, 

offering conclusions on the created models.  It suggests actions to take in the employment 

of these models as well as future research that might further improve the models 

themselves.  The paper then concludes with a summary. 

Conclusions of Research 

The primary objective of this research is to forecast airlift sustainment cargo 

demand up to one year out in the USCENTCOM AORs.  By disaggregating the theater 

sustainment cargo into AOR-specific demand and grouping the data into weekly and 

monthly totals, the researcher finds that time series forecast techniques can create suitable 

models with high RSquare values.  The models were validated using reserved data, 

indicating the models were not merely fit to historical data but also show the ability to 

forecast future data.  In fact, when compared to the five-year moving average technique 

recently proposed to increase CRAF fixed buys, the researcher’s model achieves lower 

sum of squared error values. 

The researcher modeled both Iraq and Afghanistan+ airfields.  In the case of the 

Iraq models, the intent was less to create a predictive model (as Iraq operations have 

come to an end) as it was to show that historical demand could be fit well using time 
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series techniques.  Modeling Iraq also revealed that both AORs, throughout the course of 

active operations, are best modeled by seasonal exponential smoothing (and possibly 

seasonal ARIMA, timeframe dependent).  This suggests that future conflicts in other 

AORs might also be fit well using these time series forecasting techniques. 

Significance of Research 

Time series forecasting has been studied and applied to myriad prediction 

problems over a spectrum of scenarios, including demand for aviation passenger and 

cargo transportation.  It has on at least one occasion been applied to the specific problem 

of concern in this paper, namely the airlift of sustainment cargo to overseas military 

destinations.  However, the researcher was not able to find a recent application of modern 

time series forecasting techniques to the creation of an adaptable forecast model for this 

problem.  This research fills that gap.  The models created in this research are 

immediately useful to the forecasting of both longer term (one year) and shorter term 

demand.  Given the emphasis the CRAF participants put on accurate demand forecasting, 

which helps their business planning in a competitive environment, any increase in either 

forecast range or forecast accuracy is welcome.  The comparison in Appendix B of the 

recently proposed moving average method to the Afghanistan+ model from this research 

indicates the latter gives a much improved forecast judging by demand error over the 

2010 and 2011 test years.  Thus the DoD could have more confidence in its forecast 

technique, and therefore could offer a higher fixed buy than with competing methods.  

CRAF partners and military schedulers would benefit by the increased accuracy.  
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Recommendations for Action 

It is recommended that USTRANSCOM planners take the Afghanistan+  models 

and use them in parallel with current methods for a number of months.  This test period 

would afford the opportunity to learn how to reduce new data and add it to the model 

databases, to navigate a data analysis program such as JMP, and to further validate the 

models by testing them against future months.  Assuming the models continue to perform 

well, the models should be employed as appropriate in the forecasting of short and long-

term demand.  The strength of an adaptive model is its ability to be updated with new 

data, yet retain its basic structure.  As the forecast graphs in this paper illustrate the 

forecast confidence intervals can widen fairly quickly.  Therefore updates, perhaps 

monthly, would be crucial to maintaining prediction accuracy. 

Recommendations for Future Research 

If the GATES database had included unit type data, the researcher would have 

tried a regression analysis using location, date, and unit type as predictors of demand.  

Unfortunately unit type data was not immediately available, although the “ultimate 

consignee” column does list the Department of Defense Activity Address Code 

(DoDAAC) for the requesting unit.  The DoDAAC is an address unique to each unit (but 

not unit type), so in theory an extensive mapping effort could be accomplished to decode 

the DoDAACs and uncover the underlying unit type requesting the cargo.  Future 

research to do just that would allow for regression analysis on the same data set, possibly 

increasing model accuracy. 
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As alluded to in the literature review, some researchers have attempted to find 

hybrid approaches to forecasting in order to improve on the accuracy possible to a single 

method.  In that vein, research that fuses together time series forecasting with causal 

factors, such as boots-on-ground, could conceivably yield better accuracy.  An example 

might include merging a regression analysis, perhaps using boots-on-ground and the 

variables mentioned above, with a time-series forecast, assigning each method a relative 

weight.  The number of possible hybrid approaches is not limited; there is much potential 

for model improvement as a result. 

Summary 

The researcher, using time series forecasting techniques developed primarily in 

the 1960s and1970s, formed models to forecast sustainment demand in the Iraq and 

Afghanistan AORs.  These models are adaptive, meaning they can be updated with 

relative ease using newly acquired data.  If further validation of the model proves its 

accuracy, the DoD could with improved confidence increase the CRAF fixed buy.  CRAF 

participants stand to benefit from the larger guaranteed level of business, while DoD 

schedulers could base their short term sustainment scheduling on the forecast numbers. 
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Appendix A 

 

Table 10: Aerial Port Codes Represented in the Model 
 

APC Airfield Name APC Airfield Name 

3OR Al Asad, Iraq KBL Kabul Int’l, Afghanistan 

6OR Tikrit East, Iraq KDH Kandahar, Afghanistan 

ADA Incirlik, Turkey KIK Kirkuk, Iraq 

ADJ Marka Int’l, Jordan KWI Kuwait Int’l, Kuwait 

BAH Bahrain Int’l, Bahrain O2R Al Sahra, Iraq 

BSR Basrah, Iraq O6R Qayyarah West, Iraq 

DHF Al Dhafra, UAE O8R Tallafar, Iraq 

ESB Esenboga, Turkey OA1 Bagram, Afghanistan 

FAH Farah, Afghanistan OA4 Salerno, Afghanistan 

FJR Fujairah, UAE OR5 Al Taqaddum, Iraq 

FRU Manas, Kyrgyzstan OR7 Ubayduh Bin Al Jarrah, Iraq 

IGL Cigli, Turkey OR9 Balad, Iraq 

ISB Islamabad, Pakistan OSM Mosul, Iraq 

IUD Al Udeid, Qatar SDA Baghdad Int’l, Iraq 

JAA Jalalabad, Afghanistan TA8 Ali Base, Iraq 

JIB Anbouli, Djibouti TTH Thumrait, Oman 

 

 

 

  



 

61 

Appendix B 

 

The following is a comparison of the seasonal exponential smoothing model and a 

proposed CRAF incentive model (5-yr moving window), applied to the weekly grouping 

for Afghanistan+ demand.  The moving average was computed using a uniformly 

weighted moving average (UWMA) with KSigma = 3, and an exponentially weighted 

moving average (EWMA) with KSigma = 3 and weighting = 0.5. 

 

Figure 27: Afghanistan+ Weekly Grouping, 5-Yr UWMA 

 

Table 11: 5-yr UWMA Output 
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Figure 28: Afghanistan+ Weekly Grouping, 5-Yr EWMA: 

 

Table 12: 5-yr EWMA Output 

 

 
 The purpose of this comparison is to determine whether the researcher’s model is 

better for estimating the yearly fixed buy than the approach suggested in the DoD’s FY08 

budget request—a 5-year moving average of demand for CRAF business (Arthur: 1).  

The seasonal exponential smoothing model was formed on CY2005-2009 data, and the 

residuals were captured for the CY2010 forecast.  The model was reformed on CY2005-

2010 data and again the residuals for the next yearly forecast were captured.  The sum-of-

squared errors (SSE) for the two periods were computed separately.  For the moving 
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average models, the SSE were computed separately for the two forecast periods, CY2010 

and CY2011. 

 The chart below summarizes the results, confirming that the seasonal exponential 

smoothing model is indeed better than the moving average models in minimizing the 

SSE.  The DoD’s proposal was not implemented, although future efforts to increase 

forecast confidence in order to raise the fixed buy total would be better served by using 

this research model than the moving average approach. 

 

Table 13: Comparison of Moving Average and Seasonal Exponential Smoothing Methods 

 5-Yr UWMA 5-Yr EWMA Seasonal Exponential Smoothing 

Calendar Year Sum of Squared Errors 

2010 36.31 E+13 30.78 E+13 5.296 E+13 

2011 20.94 E+13 64.18 E+13 3.977 E+13 
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Appendix C 

 

 

 

Table 14: Example GATES Database 
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Appendix D 

Duke University’s “Rules” for Identifying ARIMA Models 

Rule 1: If the series has positive autocorrelations out to a high number of lags, 
then it probably needs a higher order of differencing. 

Rule 2: If the lag-1 autocorrelation is zero or negative, or the autocorrelations are 
all small and patternless, then the series does not need a higher order of differencing. If 
the lag-1 autocorrelation is -0.5 or more negative, the series may be over-differenced. 

Rule 3: The optimal order of differencing is often the order of differencing at 
which the standard deviation is lowest. 

Rule 4: A model with no orders of differencing assumes that the original series is 
stationary (mean-reverting). A model with one order of differencing assumes that the 
original series has a constant average trend (e.g. a random walk or SES-type model, with 
or without growth). A model with two orders of total differencing assumes that the 
original series has a time-varying trend (e.g. a random trend or LES-type model). 

Rule 5: A model with no orders of differencing normally includes a constant term 
(which represents the mean of the series). A model with two orders of total differencing 
normally does not include a constant term. In a model with one order of total 
differencing, a constant term should be included if the series has a non-zero average 
trend. 

Rule 6: If the PACF of the differenced series displays a sharp cutoff and/or the 
lag-1 autocorrelation is positive--i.e., if the series appears slightly "under-differenced"--
then consider adding an AR term to the model. The lag at which the PACF cuts off is the 
indicated number of AR terms. 

Rule 7: If the ACF of the differenced series displays a sharp cutoff and/or the lag-
1 autocorrelation is negative--i.e., if the series appears slightly "over-differenced"--then 
consider adding an MA term to the model. The lag at which the ACF cuts off is the 
indicated number of MA terms. 

Rule 8: It is possible for an AR term and an MA term to cancel each other's 
effects, so if a mixed AR-MA model seems to fit the data, also try a model with one 
fewer AR term and one fewer MA term--particularly if the parameter estimates in the 
original model require more than 10 iterations to converge. 
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Rule 9: If there is a unit root in the AR part of the model--i.e., if the sum of the 
AR coefficients is almost exactly 1--you should reduce the number of AR terms by one 
and increase the order of differencing by one. 

Rule 10: If there is a unit root in the MA part of the model--i.e., if the sum of the 
MA coefficients is almost exactly 1--you should reduce the number of MA terms by one 
and reduce the order of differencing by one. 

Rule 11: If the long-term forecasts appear erratic or unstable, there may be a unit 
root in the AR or MA coefficients. 

Rule 12: If the series has a strong and consistent seasonal pattern, then you should 
use an order of seasonal differencing--but never use more than one order of seasonal 
differencing or more than 2 orders of total differencing (seasonal+nonseasonal). 

Rule 13: If the autocorrelation at the seasonal period is positive, consider adding 
an SAR term to the model. If the autocorrelation at the seasonal period is negative, 
consider adding an SMA term to the model. Do not mix SAR and SMA terms in the 
same model, and avoid using more than one of either kind. 
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Appendix E 

Weekly Iraq Demand Models 

The following graphs show both the fit to historical data as well as the predicted 

demand and 95% confidence intervals for each model.  

Figure 29: Forecast Method Graphs, Weekly Iraq Demand 

 

 

 

 

 

Simple Exponential Smoothing, Weekly Iraq Demand 

Double (Brown’s) Exponential Smoothing, Weekly Iraq Demand 

Linear (Holt’s) Exponential Smoothing, Weekly Iraq Demand 
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Seasonal Exponential Smoothing, Weekly Iraq Demand 

Winters Method, Weekly Iraq Demand 

ARIMA(0,1,1) Method, Weekly Iraq Demand 

ARIMA(0,1,1)(0,1,1) Method, Weekly Iraq Demand 
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Appendix F 

Weekly Afghanistan+ Demand Models 

The following graphs show both the fit to historical data as well as the predicted 

demand and 95% confidence intervals for each model. 

Figure 30: Forecast Method Graphs, Weekly Afghanistan+ Demand 

 

 

 

 

 

Simple Exponential Smoothing Method, Weekly Afghanistan+ Demand 

Double (Brown’s) Exponential Smoothing Method, Weekly Afghanistan+ Demand 

Linear (Holt’s) Exponential Smoothing Method, Weekly Afghanistan+ Demand 
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Seasonal Exponential Smoothing Method, Weekly Afghanistan+ Demand 

Winters Exponential Smoothing Method, Weekly Afghanistan+ Demand 

ARIMA(0,1,1) Method, Weekly Afghanistan+ Demand 

ARIMA(0,1,1)(0,1,1) Method, Weekly Afghanistan+ Demand 
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Appendix G 

Monthly Iraq Demand Models 

The following  graphs show both the fit to historical data as well as the predicted 

demand and 95% confidence intervals for each model. 

 Figure 31: Forecast Method Graphs, Monthly Iraq Demand 

 

 

 

 

 

Simple Exponential Smoothing Method, Monthly Iraq Demand 

Double (Brown’s) Exponential Smoothing, Monthly Iraq Demand 

Linear (Holt’s) Exponential Smoothing, Monthly Iraq Demand 



 

72 

 

 

 

 

 

 

 

Seasonal Exponential Smoothing, Monthly Iraq Demand 

Winters Method, Monthly Iraq Demand 

ARIMA(0,1,1), Monthly Iraq Demand 

ARIMA(0,1,1)(0,1,1), Monthly Iraq Demand 
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Appendix H 

Monthly Afghanistan+ Demand Models 

The following  graphs show both the fit to historical data as well as the predicted 

demand and 95% confidence intervals for each model. 

Figure 32: Forecast Method Graphs, Monthly Afghanistan+ Demand 

 

 

 

 

 

Simple Exponential Smoothing Method, Monthly Afghanistan+ Demand 

Double (Brown’s) Exponential Smoothing Method, Monthly Afghanistan+ Demand 

Linear (Holt’s) Exponential Smoothing Method, Monthly Afghanistan+ Demand 
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Seasonal Exponential Smoothing Method, Monthly Afghanistan+ Demand 

Winters Method, Monthly Afghanistan+ Demand 

ARIMA(0,1,1), Monthly Afghanistan+ Demand 

ARIMA(0,1,1)(0,1,1), Monthly Afghanistan+ Demand 
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Appendix I 

This appendix demonstrates the ability of the Afghanistan+ weekly model formed 

in this paper to be used on an individual airfield, Kandahar, to predict demand over a 

three month period.  This is done in order to address the secondary research objective, 

namely to create a forecast tool useful to the DoD planners as they schedule traffic flow 

into and out of individual airfields in the AOR. 

 

Figure 33: Time Series of Demand at Kandahar Airfield 

Weekly Afghanistan+ demand from January 2005 through September 2010 into 

Kandahar is shown graphically in Figure 33.  The demand curve saw an increase from 

2008 through 2011.  A seasonal pattern is also present, with a 52-week cycle. 

The JMP model comparison output for the chosen seasonal exponential 

smoothing model is presented in Figure 34.  The RSquare is again respectable at 0.722: 

 

The final steps in forming the model are a check of the residual plot and a 

validation of the model on a portion of the data. 

Figure 34: Model Comparison Chart for Seasonal Exponential Smoothing, Weekly Kandahar Demand 
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Figure 35: Residuals for Seasonal Exponential Smoothing Model of Kandahar Airfield 

 
The residuals chart for the selected model is shown in Figure 35.  The residual 

plot looks normally distributed, with a mean of zero, although the variance does seem to 

vary.  It is has a period of narrowing at the end of 2007, then disperses some when 

demand picks up toward the beginning of 2010.   

Finally, the model fit and forecast graph is given in Figure 36.   

 

Figure 36: Seasonal Exponential Smoothing Forecast, Kandahar Weekly Demand 

 

Focusing on the forecasted region, the Figure 37 shows the predicted versus 

actual values for the series over three months.  The confidence interval is graphed and the 

actual data fall within it. 
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Figure 37: Seasonal Exponential Smoothing 3-Month Forecast, Weekly Kandahar Demand 

 
Model Validation 

Table 15: Validation Statistics for Seasonal Exponential Smoothing Model 

 

Table 15 shows the validation statistics for the chosen seasonal exponential 

smoothing model.  The RMSE values are closer than they were for the one-year 

Afghanistan+ demand, though again it is a subjective matter as to whether they are 

roughly equal.  Yet the RE and R2 values again agree fairly well, and RE is highly 

positive.  Therefore, the model is considered validated.   

Model Equation 

The model equation is given by Equations 6.1 – 6.3.  The smoothing constants as 

computed by JMP are statistically significant: 

  = .5315, with a t-ratio of 7.53. 
  = .8438, with a t-ratio of 4.61.  
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